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Abstract

As new space missions from earth to the planets are designed, the requirements
for accurately estimating the trajectory in flight will in general increase to com-
plement the more complex scientific desires. Conventional methods of in-flight
orbit determination, such as two-way-doppler and range measurements from
one or more ground tracking stations, have demonstrated the high accuracy that
can be achieved. Traditionally the accuracy of orbit estimation becomes very
good near the planet when the spacecraft speeds up under the planet’s gravita-
tional attraction and thus as the doppler changes are magnified. The purpose of
this study is to analyze the geometrical properties of spacecraft doppler measure-
ments made near a planet and to show that under certain situations an orbit-
determination program could converge to an incorrect solution for the planet-
centered inclination of the spacecraft hyperbolic orbital plane. Ways of correcting
the situation are also presented.
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An Ambiguity in the Orbit Determination
of Planetary Flyby Trajectories

1. Introduction

The primary concern in the determination of the orbit
of a spacecraft during a mission is to estimate the miss
vector and the time that the spacecraft will fly by the
planet. The knowledge of these parameters is important
to the success of the mission if precision-pointing instru-
ments aboard the spacecraft are to scan the planet. An
initial uncertainty of the spacecraft’s position and velocity
in heliocentric space prior to planet arrival will result in
a position uncertainty as the spacecraft passes the planet.
Figure 1 demonstrates this position uncertainty. As the
spacecraft approaches the planet and speeds up under the
planet’s gravitational influence, the orbit determination of
the spacecraft’s near-planet trajectory becomes more accu-
rate. This occurs because the velocity of the spacecraft is
changing more rapidly at this time, which in turn causes
the scalar speed (range rate) between the earth and the
spacecraft, and thus the doppler-frequency measurement,
to change more rapidly.

During the investigation of geometrical properties of
trajectories near a target planet, dual solutions for the
planet-centered inclination of the spacecraft’s flyby tra-
jectory plane have been found that will produce a
near-identical doppler time history as well as earth-to-
spacecraft range time history past the planet. In other
words, for every planet-centered trajectory inclination

JPL TECHNICAL REPORT 32-1331

SPACECRAFT FLYBY
TRAJECTORY

DOPPLER
MEASUREMENT

SPACECRAFT

EARTH POSITION

UNCERTAINTY

Fig. 1. Description of flyby pass

or orientation that is selected for the spacecraft’s ballistic
flyby at the planet, another inclination can be found (but
with the other orbital elements being the same) that will
produce a near-identical time history of the doppler and
earth-to-spacecraft range past the planet. For identifica-
tion purposes let us define the other inclination as the
“image” inclination. Prior to this investigation, it was
thought that every trajectory that passed the planet has
a unique doppler and earth-to-spacecraft range time
history past the planet. The parameter time histories



are identical for the two inclinations if the vector from
the earth-based observer to the spacecraft is held fixed.
Allowing the position vector to vary realistically, for a
spacecraft that approaches the target planet and for dis-
placements of the spacecraft that result from rotating the
trajectory plane, produces a range-rate time history
slightly different for the two inclinations. The difference
depends on the approach geometry of the spacecraft near
the planet. The range time history of the two inclinations
is still the same to within the expected accuracy of the
measurements. The dual solutions of inclination for a
given range and range-rate time history are symmetric
about a plane that contains the earth, the planet, and the
approach asymptote of the near-planet trajectory, as
shown in Fig. 2. In this figure the trajectory inclination is
measured from the plane that contains the approach
asymptote and the direction to the earth.

The direct implications of the dual solutions are that an
orbit-determination procedure using doppler measure-
ments and/or range measurements might converge to the
incorrect image solution for the planet-centered inclina-
tion of the trajectory plane. This could happen if the
initial estimated flyby trajectory is located such that
the a priori dispersions of inclination encompass both the
image and the nominal inclination. The derivations for
the dual solutions of the trajectory-plane inclination for

NOMINAL TRAJECTORY
INCLINATION

IMAGE INCLINATION

PARALLEL TO
APPROACH
ASYMPTOTE / /

DOPPLER ﬁ] OF THE TWO SPACECRAFT
ARE THE SAME AT A GIVEN TIME T

PLANE CONTAINS DIRECTION TO
EARTH AND APPROACH ASYMPTOTE

Fig. 2. Description of dual solutions for inclination

a given doppler and earth-to-spacecraft range time history
are given in the subsequent discussions.

Simplifying assumptions are made to the geometry of
the doppler observable to enable the partial differentia-
tion to be easily managed. For an example problem, these
partial derivatives are then used in a recursive orbit-
determination program to show that incorrect conver-
gence to the trajectory image inclination can result under
certain situations. A spacecraft-centered angular mea-
surement is then taken in conjunction with the doppler
measurement to show that correct convergence results.
Other means of assuming a correct convergence are also
discussed. The numerical results are obtained for the ex-
ample trajectory by using an IBM 1620 digital computer.

11. Derivation of Observables

For radar observations, the basic measurement is an
integrated doppler-frequency shift. This measurement can
be converted to the range rate j of the spacecraft with
respect to the observer on earth (Ref. 1). Hence in this
study the range rate will be considered as an observable.?

A second observable used in the study is the spacecraft
angle B between the direction to a star and the planet as
measured by an on-board sensor. The star Canopus is
used as the reference star for the angular measurement.
The literature (Refs. 2 and 3) indicates that two angular
components could be measured for approach guidance.
The angle between the sun and the planet, called the cone
angle, could be taken as one measurement type; the angle
between two planes, one plane containing the sun-to-
spacecraft-to-Canopus vector and the other plane con-
taining the sun-to-spacecraft-to-planet vector, called the
clock angle, as the second measurement type. It is assumed
that the spacecraft is oriented by a two-axis sun sensor
that points the roll axis toward the sun, and by a single-
axis star sensor that acquires the star Canopus and holds
the spacecraft fixed. in roll. Another optical device that
finds the center of the visible disk of the target planet
completes the measurement system. For simplicity and for
the purposes of this study, only one type of angular mea-
surement—the spacecraft-centered angle between the star
Canopus and the target planet—is used. This angle differs
from the two angles previously described. However, the
conclusion of the study should not change with the sub-
stitution or inclusion of one or more types of angular
measurement. Figure 3 shows the graphical explanation
of the two observables used in this report.

'The terms observable and measurement are assumed to be inter-
changeable in this report.
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EARTH Q STAR

p (RANGE-RATE MEASUREMENT)

Fig. 3. Description of the observables

A. Simplified Range-Rate Computation

The range rate between an earth-based observer and
the spacecraft can be expressed as

= Visp (1)

where
Vg =—Ve+V
Since
Vsg= —Vg+ Vp + Vg
it follows that
p=(—Vs+Vp+ Vg) P
where
Vg = velocity of the spacecraft with respect to the
observer on earth

Vz = heliocentric velocity of an observer on earth ata
given time

V = heliocentric velocity of the spacecraft
Ve = heliocentric velocity of the center of Mars at a
given time
Vs,» = velocity of the spacecraft with respect to the

center of the planet at a given time

p = the unit vector from an observer on earth to the
spacecraft at a given time

JPL TECHNICAL REPORT 32-1331

Figures 4 and 5 show the graphical explanations of range
rate and some of the defined vectors.

1. The observer-to-spacecraft direction vector. The
direction P from an earth-based observer to the spacecraft
near the planet can be expressed in terms of a coordi-
nate system ﬁ, §,T used at the Jet Propulsion Laboratory
(Ref. 4).

A
The unit vector S is along the approach asymptote of
the spacecraft’s hyperbolic conic with respect to the
planet. For a given launch date at earth and arrival date

EARTH

SPACECRAFT

Fig. 4. Description of range rate

HELIOCENTRIC
TRAJECTORY OF
SPACECRAFT

PLANET

Fig. 5. Heliocentric view of spacecraft



at the planet, the direction of § is almost constant, inde-
pendent of the orientation of the spacecraft’s trajectory
plane with respect to the encounter planet. Appendix A
reveals more information on the definition of S.

The unit vector Tisina plane perpendicular to S and
is parallel to a given plane (such as the ecliptic} and is
given by

A A

A SXP

T= A
18 % B|

A
where P is along the ecliptic north pole, and

A A_A

R=8SXT

The observer;to-spacecraft direction P can then be ex-

pressed in the R, S,'f‘ system as
p=p-98+-HT+p-BR (2)

From Fig. 6 the following definitions are readily obtained:

;’)\-/S\= —cos {y

A A .

p:T = sinlzcosqg (3)
6'R: Sin&;sinvm

Substituting Eqs. (3) into Eq. (2) yields
;{)\z —cos§E§+sinZEcos»r/E'/I\'-%-sinCEsianﬁ 4)

As shown in Fig. 6, the angles {; and 5z define the direc-
tion from the observer to the spacecraft in the approach-
asymptote coordinate system. The parameters vary only
slightly with time when the spacecraft is in the near
vicinity of the planet.

EARTH

Fig. 6. Description of earth’s direction

2. Velocity of spacecraft with respect to the planet. The
velocity of the spacecraft with respect to the target planet
is assumed to be that resulting from two-body motion.
This is an approximation, which becomes more accurate
as the spacecraft nears the planet. The velocity Vg, p is
then the time derivative of the radius vector r from the
target planet to the spacecraft.

The radius of the spacecraft from the target planet for
two-body celestial mechanics can be expressed as

A A
r= —rcosaS + rsinagb (5)
where
r = distance from planet center to the spacecraft

« = the planet-centered angle from a planet-centered
unit vector (parallel to —S) tor

A
$ = direction of the approach asymptote

o>

: . b
= a unit vector along b, i.e., W
b = the perpendicular vector (called the miss param-
eter) from planet center to § and lies in the trajec-
tory plane of the spacecraft with respect to the
target planet

Figure 7 describes some of these hyperbolic parameters.
The distance r, as derived in Appendix B, is given as
bz

r= 5 (6)
a (1 + ;sina — COSa)

where

a = semimajor axis of the hyperbolic orbit and is equal

to p/V7,

PARALLEL TO
APPROACH ASYMPTOTE

A
PLANET S

—= s
A U
SPACECRAFT

APPROACH
ASYMPTOTE

Fig. 7. Description of hyperbolic parameters
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p = gravitational constant of planet

V. = hyperbolic excess speed of the spacecraft with
respect to the planet (described more fully in
Appendix A)

b = |b|, semiminor axis of the hyperbolic orbit (also
referred to as the miss parameter)

The velocity Vg/» can be derived by taking the time
derivative of r in Eq. (5) as follows:

. A N,
Vypr=r=8(—7rcosa+rasine)+b(rsina+récosa)
)

The expressions for r and & can be obtained from
a=bV,
which is the angular momentum equation, and from

=

where

dr ar (b .
a;z — —Eg'(—a—COSa-i-Sma>

which is obtained by taking the derivative of Eq. (6). Sub-
stituting these expressions into Eq. (7) yields

Vs = (Vm + b%sina) § + bé (cosa — 1)%
(8)
where
/l; = cos 6T + sin oR 9)

The angle 6 is measured from the T axis clockwise to ﬁ
Hence, 4 gives the orientation of the trajectory plane,
as shown in Fig. 8. Substituting Eq. (9) into (8) yields

A
VS/p = (Vao + ——b“u}m sin a> S

i _ A
+ V. (cosa — 1) cos 6T

B T !
+ oV, (cos @ — 1)sin R (10)

JPL TECHNICAL REPORT 32-1331

->

PARALLEL TO
APPROACH ASYMPTOTE

APPROACH
ASYMPTOTE
R

Fig. 8. Description of trajectory-plane crientation

3. Simplified range-rate equation. As previously shown,
the range rate can be expressed as

p=(=Ve+Ve) P+ VP (1)
Substituting Egs. (4) and (10) into | (11) yields
p=(—Ve+ Vp)+P—V,cos

+ b“u} {(cos @ — 1) sin &z cos (nz — §) — cos ¢y sina}

(12)

Several observations concerning Eq. (12) are discussed
below.

The unit vector 6 is directed from the observer to the
spacecraft. The time-varying parameters {, and 5z define
the direction of . At a given time T, the vector P will
undergo an infinitesimal change for a small displacement
of the spacecraft near the planet, assuming that the
observer-to-spacecraft distance p is very large.

The expression (—V; + V) is the velocity of the planet
with respect to the observer on earth at the time mea-
surement. If a given time T is considered when the space-
craft is near the planet, then (—V;+V;) is fixed,
independent of the other parameters. Also, the gravita-
tional constant p of the planet is considered fixed.

The parameter b defines the distance by which the
spacecraft will miss the planet. Usually an uncertainty of
a few hundred kilometers exists in the estimate of this
parameter a few days before the spacecraft passes the
planet.

The parameter § defines the orientation of the space-
craft’s trajectory plane near the planet (see Fig. 8). Usu-
ally an uncertainty of several degrees will exist in this



parameter, depending on miss distance, a few days before
the spacecraft passes the planet.

The parameter V., defines the hyperbolic approach
speed of the spacecraft with respect to the planet. A
given launch date at earth and arrival date at the planet
will almost determine the approach speed precisely, inde-
pendent of miss distance and near-planet trajectory plane.
However, a small uncertainty in the geometry exists.
Appendix A gives more detail on the parameter.

The parameter « defines the position of the spacecraft
in its hyperbolic orbit at a given time and is a function
of u, Vo, b, 7 (time of periapsis passage), and T (the time
at which the spacecraft measurement is taken). Note that
for @ = 0 (when the spacecraft is theoretically an infinite
distance away) the expression simplifies to

p=(—Vs+Vp)-p—V.costs (13)

Also, if . =0 (no planet mass is present), the expression
is the same during the entire encounter period.

In Eqg. (12) note that the parameters § and 74, appear
only in the expression as cos (gz — 6). The difference of
(nz — 4) can be thought of as the angular orientation
of the trajectory plane from some other reference plane.
The approach asymptote-to-spacecraft-to-earth plane is a
convenient reference plane and is used in the subsequent
sections. Figure 9 demonstrates the angular difference of

PLANET

§
= 4

(ng — 6). In the diagram the vector p has been translated
in position (with the direction unchanged) to a planet-
centered coordinate system for convenience instead of the
spacecraft-centered system. The parameter can take on
positive or negative values, depending on whether 7 is
greater or less than 6. Since the equation only depends on
cos (nz — 6), the equation will yield the same value for
+(pg — 8). Thus for every aiming-point orientation of
6 = 9., on one side of the asymptote—earth plane, an image
aiming-point orientation of § = (2nz — 6,) exists that will
produce the same range rate at a given time before the
closest approach to the planet. This statement assumes
only that upon rotating the trajectory plane the resulting
displacement of the spacecraft at a given time T will
change the direction from the earth-based observer to the
spacecraft by a negligible amount.

B. Angular Measurement Computation

To distinguish which of the two planet-centered trajec-
tory orientations the spacecraft might have, an additional
measurement would be a possibility. The measurement
chosen in this study is the spacecraft-centered angle be-
tween a far-away celestial body and the planet. The far-
away celestial body could be the sun, another planet, or
a star. To simplify the problem, a star is chosen, since
its direction is fixed in space at any given time.?

*The star Canopus is used in the numerical results presented in
Section V.

DIRECTION FROM
EARTH

o>

Fig. 9. Description of angular difference (y; — )
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A

The direction C from the star to the spacecraft is ex-
pressed in the same manner as the earth-to-spacecraft
direction in Egs. (2) and (3). The vector is then expressed
as

A A A A A A A A
C=(CS)S+EC-HT+(C-RR (14a)
where
A A
C+S= —cos{
A A
C-T = +sinlccosge (14b)
(A]'ﬁ: +Sin€(vsin'/](v

Figure 10 shows the graphical explanation of the angles
Cc and N

When Eqs. (5) and (9) are combined, the direction from
the planet to the spacecraft can be expressed as

A A . A . . A
r= —cosaS + sinacos §T + sinasin IR (15)

The desired angular measurement 8, shown in Fig. 11,
can be expressed as

cosfB = (é?)

where 0==8="180. Substituting Eqs. (14a), (14b), and
(15) into the above expression for g yields

cos B = cos acos {¢ + sin a sin & cos (n¢ — 6) (16)

The angles &; and 5¢ of Eq. (16) define the direction
from the star to the spacecraft in an asymptote-oriented
coordinate system. For a given launch date and arrival
date, these parameters are almost fixed. However, a small
uncertainty exists in the values of the parameters because
of the uncertainty in the precise;direction of the approach
asymptote and the precise direction to the star.

Note that 3¢ and 8 of Eq. (16) appear in the angular
expression as cos (¢ — 6), which is the same form for
7z and § in the range-rate expression of Eq. (12). Thus
if 9¢ is equal to 5z, the angular measurement will not help
in determining which of the two trajectory orientations
(0 = 6, or 9 = 235 — §,) the spacecraft might have. This
would take place if the earth were used in the angular
measurement C = P, instead of another body such as a
star. Thus one would not choose the earth for one of the
bodies in the angular measurement to resolve the tra-
jectory orientation ambiguity. Also, one would not use
the earth-to-spacecraft range as a measurement to resolve
the ambiguity because of the same type of phenomena.
This will be discussed in more detail in Section VI.
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Fig. 10. Description of star's direction
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Fig. 11. Description of spacecraft angular measurement

I{l. Derivation of Partial Derivatives

A. Assumptions

In this section, the partial derivatives of the observables
with respect to the independent variables are derived
for the orbit-estimation procedure described in Section IV.
To simplify the derivation of the partials and to make
the task manageable, the following specific assumptions
are made concerning the model:

(1) The first assumption is that the observer measuring
the range rate is at the center of the earth. This
assumption should not affect the conclusions of this
study. However, future studies should probably
place one or more stations on the earth’s surface
and should include the station location uncertain-
ties.

(2) The second assumption is that the gravitational
constant . of the planet and the ephemeris posi-
tions and velocities of the earth and planet are



3)

(4)

known. Again, these assumptions should not affect
the conclusions of this study, but for completeness,
future studies should include their uncertainties.

The third assumption is that the spacecraft’s motion
with respect to the target planet is that of two-
body motion. Also, the direction of the approach
asymptote S is assumed not to change with time;
however, an uncertainty in the exact direction of
this vector is included in the analysis. These as-
sumptions should be accurate enough for near-
planet orbit-determination studies.

The fourth assumption is that the vector § from
earth observer to spacecraft remains fixed for dis-
placements of the spacecraft near the planet and
also during the total time that the spacecraft ap-
proaches the planet. This assumption should affect
the accuracy of the partials by only a small amount
when the spacecraft is close to the planet. How-
ever, the accuracy of this assumption will be de-
graded the further away the spacecraft is from the
planet. The partial derivative of p with respect to
an independent variable, say g, takes the form of

A
A op
'P_}_VS/E'W

3% _ Vs
g = 5 (17)

where

VS/E = _VE' -+ VP + Vs/p

Equation (17) is the result of taking the derivative
of Eq. (1). The first part of Eq. (17) will definitely
dominate the total partial when the spacecraft is
close to the planet and the spacecraft velocity is
changing. However, when the spacecraft is far
away from the planet, the second part of the ex-
pression might dominate the term for the inde-
pendent variables of b, 6, and +. Future studies
should include a non-fixed direction for p. Modi-
fied equations for the start of such a study are
given in Section VI. However, in this study P is
assumed to be fixed, which makes

and thus the partial derivative of range rate with
respect to the independent variable ¢ will have the
form of

op oV, A
9P _ OY¥s/E p

= 7 (18)

B. Independent Variables

For the computation of range rate g, the six independ-
dent variables are b, 0, Vo, g, {z, and =, where

b = miss parameter, or semiminor axis of spacecraft
hyperbolic orbit with respect to target planet

9 = orientation of spacecraft trajectory plane (planet-
centered)

V.. = spacecraft hyperbolic excess speed with respect
to target planet

= = time of periapsis passage or closest approach to
planet

and the angles 7z and (s define the direction from the
approach asymptote S to the earth.

For the angular measurement B, the six independent
variables are b, 6, V., n¢, &¢, and 7. The angles 5, an/(\i &e
define the direction from the approach asymptote S to
the star.

The velocities 'V, and V, are not dependent on the
above independent variables and from Eq. (18) the par-
tial derivative of range rate with respect to an indepen-
dent variable, say g, will thus take the form of

2% W

oq 9q
or
. A
9% _2(VsyeP)
oq oq

where ¢ = b, 8, V, etc., and }A) is a fixed unit vector from
the earth-based observer to the spacecraft.

C. Basic Equations

The basic equations by which the partial derivatives
can be derived are now reviewed. The equations that
give the observables p and B are

Vs/p* 6 = —Vecosls

+ _lﬂl; {(cos a — 1) sin &z cos {(nz — 8) — cos {g sin a}

(19)
and

cos B = c0s £ cos a - sin ¢y sin « ¢os (ny — 6) (20)
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where 0= =180 deg. The equation that relates the
time of the observation to the independent variables is

n(T —1)=—F +esinhF a1
where

n = the mean angular motion and is equal to V? /u
T = time of the observation

7 = time of closest approach (periapsis passage) be-
tween spacecraft and the planet

F = eccentric anomaly of hyperbola

e = the eccentricity of the hyperbolic orbit and is
equal to (a® + b?)%/a

a = the semimajor axis of the hyperbolic orbit and is
equal to u/V2

The equation that relates b to o, a to @ and « to F is
bz

a({ecoshF — 1) = 5
a(l +-;sina - OOSa)

=7r

D. Partial Derivatives

The partial derivatives of the observables § and B with
respect to the independent variables can be expressed as
follows:

B _ (%, %0 % e oF |
b T\ da @b ' 0a OF ©b

% _ (%

20~ \ 24

op  f 0p +a_;3 Ou 0p Oa oOF
oV,  \dV, da 9V, ' da OF 3V,

op op

b _ _BP_>

iy 0ln

% _ 3 e OF

9r  2a oF or

(23)

9B _ 9B %a OB O« OF

b~ %ax 0b  3a OF ob

B _ (2B

29~ \ o8

%8 _ 28 da , 28 0 OF

Ve 0a 8V, 0a oF 0V,

B _ (3&)

ole 0l

B _ _ 3B

ope 09

98 _ 9B Ba OF

or 0« oF o7 J
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where the following partials can be derived by the use of Egs. (19) through (22):

9%\ _
(%)~
%

%

Oa

%:

O

SF=

oF _
ob

oF _
Ve

oF

EZ

()=
)

Oa
WV,

()=

% _

Oa

i
(aa

()

sz {sin £y cos (ng — ) [cos @ — 1] — cos ¢z sina}

= — b\’; {sin &z cos (nz — ) sin &« + cos Lz cOSs o}

b3 (r + a)
at re®
r(bcosa + asina)

2b — rsina —

ae b?sinh F
7% (D ¢os « -+ a sin a)

bsinh F
aer
3aF 3aze: — 2b*
_ W + (sinh F) (——————raevw \)
Ve

T

bV sin £z sin (ng — ) [cosa — 1]

_ 22
T V,ob

bvz
bV {cos Lucos(ng — 0) [cosa — 1] + sin ¢z (sina + M"’)}

sin a cos ¢ — cos asin £¢ cos (g — 6)
sin 8

sin & sin &g sin (g — 9)
sin 8

€0$ a §in £ — sin a cos {¢ cos (g¢ — 0)
sin 8

bv:
bL{sm {ncos(ng — ) [cose— 1] — cos &z (sma — -—;—"—'i>}

/

(24)

The partial derivatives in Eqs. (23) and (24) that are inside the parentheses have the meaning of the explicit partial
differentiation of the observable with respect to the independent variable.

10
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IV. Application of Recursive Estimation Theory

The orbit-determination theory used in this investiga-
tion is based on the linear filter theory proposed by
Kalman (Ref. 5). The theory is utilized in this investiga-
tion by assuming that linearized changes in the observ-
able will result from small changes in the state variables.
The covariance matrix and estimated variables are up-
dated at each successive time increment along the space-
craft orbit.

The covariance matrix of the uncertainties of the esti-
mated variables at each time is expressed (Refs. 5, 6) as

A=A, — A AT [AA, AT + A TAA, (25)
where A, is the covariance matrix of the variables at the
preceding time. The new estimated values for the vari-
ables can be expressed as

=% +Aq (26)

When only range rate is used as an observable, the
matrices take the form of

b,

6,
= |V
q: —

NEL

{im

T1

where q; is the estimate of the variables at the time T
based on previous measurements using range-rate mea-
surements only.

The matrix Aq is the change in the estimated variables
based on the current range-rate measurement and is
described as

Ab
Af
AV,

B
2
I

Ang
Al
Ar

When range-rate and spacecraft angular measurements
are used as observables, the matrices take the form of
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b, ab
6, A
Vo1 AV,
G = e and Aq= As
{m Ar
{ar Ae
ne1 Ange
T1 At

The matrix Aq is defined as
AG = A, AT [AA, AT + A] [AY] (27
where [AY] is the residual matrix given as
[AY] = [(5n — §)]

for utilizing only range-rate measurements, and by

[AY] _ l:(l.’n - f"):l (28)
(Bn - :8)

for using range-rate and angular measurements together.

Several quantities used in the preceding equations are
defined as follows:

Bn = the theoretical observed spacecraft angular mea-
surement, and its value is determined using the
nominal trajectory

B = angular measurement computed from the esti-
mated values of the independent variables

pn = the theoretical observed range rate, and its value
is determined using the nominal trajectory

p = range rate computed from the estimated values
of the independent variables

A\ = covariance matrix of the observables. For range-
rate measurements, A is a scalar quantity ex-
pressed as

2

o
_ %
)‘—AT

For using range-rate and angle measurements
together (uncorrelated), A is expressed as

laf.) 0
AT, a )

11



op = the standard deviation of the data noise on the
range-rate measurement; in the results the devia-
tion is for a l-min sample

o, = standard deviation of the angular measurement
for a 1-min sample

AT = the time between each desired measurement
along the orbit in minutes

A = the matrix of partial derivatives. If only range-
rate measurements are used, A is expressed as
% 9 0 op 0 9
S g s a 30

If range-rate and angular measurements together
are considered, A is expressed as

op 0p 9 op op op
b 96 V. o o 0 O or

A= (31)
98 9B B 0B 9B oB
b0 V. 0 0 Bz g o

The covariance matrix of the estimated variables has the
form of

o} P10V0s

PsOH0T
P100s o2
2
A= Ve
2
0'11E
2
UCE
P50b0T : o}
(32)

if only range-rate measurements are considered, and has
the form of

0'% P10b00 T PrOB0OT

2 . . . . .
P10b06 '

2
O"qE

O.CE
2
0{0

0'110

pP1040T . . . . - . o2

(33)
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if range-rate and angular measurements together are con-
sidered. The variances of the independent variables are
the elements of the diagonal of the matrix,

To simplify the problem, noise will not be added
directly to the range-rate and angular measurements.
However, an uncertainty in the measurements will be
assumed. In other words, the values for the observed
range rate and spacecraft angle will be computed using
the nominal trajectory with no noise added; however,
in the matrix manipulations an uncertainty in the mea-
surements will be assumed. These uncertainties are con-
tained in the A matrix. The result of this simplification is
that the estimated variables will converge to their proper
values faster and more smoothly than if noise had been
added. However, the conclusions of the study should not
be affected.

One reason for using a recursive filter theory in this
investigation, instead of other estimation procedures, ‘is
the reduction in machine time for running the various
cases. Inverting matrices, such as 6 X 6 or 8 X 8, requires
much machine time for many computations along the
trajectory. By using the recursive filter theory, the maxi-
mum matrix size that has to be inverted is a 1 X 1 using
range-rate measurements with six independent variables
to be estimated, and a 2 X 2 using the range-rate and
angular measurements together with eight independent
variables to be estimated.

V. Numerical Results

The numerical results presented in this section were
taken from a double-precision orbit-estimation program
utilizing the IBM 1620 digital computer. The program
uses the estimation procedure and equations given in
Sections III and 1V. The program is started 10 days prior
to the spacecraft’s closest approach to the planet and
incremented in time. The time increments were selected

such that the changes in the partial derivatives were less
than 50%.

A. Example Trajectory

The example trajectory used in the results is a ballistic
trajectory from earth to Mars. The approach character-
istics selected at Mars are typical of a launch date in the
middle of February 1969, with an arrival date at Mars
at the beginning of August 1969. This selection is repre-
sentative of the Mariner Mars 1969 flyby mission to be
conducted by the Jet Propulsion Laboratory. The nominal
values used for the independent variables are as follows:
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b =7000 km (impact parameter)
§ = 25 deg (orientation of trajectory plane)
V. =7 km/sec (approach speed)

nz = 30 deg (orientation of approach asymptote, earth-
to-spacecraft plane)

Lz = 160 deg (angle between approach asymptote and
earth-to-spacecraft vector)

o =260 deg (orientation of approach asymptote,
Canopus-to-spacecraft plane)

Lo = 100 deg (angle between approach asymptote and
Canopus-to-spacecraft vector)

7 =0 hr (the nominal time of spacecraft closest ap-
proach to the planet, designated as 0 hr GMT)

The parameters Ve, 1z, s, 70, and ¢ define the hyper-
bolic excess velocity at Mars and the angles between the
earth and the star Canopus. For a given launch date at
earth and arrival date at Mars, the parameters are ap-
proximately determined and thus only a small uncertainty
will exist. A larger uncertainty will exist in the parameters
b and 6, which define how the spacecraft will pass the
planet, and r, the precise time of arrival.

B. Initial Uncertainty of Independent Variables

As mentjoned previously the starting time for the esti-
mation program was selected to be 10 days before the
spacecraft’s closest approach to the planet. Also at this
time, an initial covariance matrix was selected for the
uncertainties of the independent variables. It was as-
sumed that there was no correlation between the inde-
pendent variables at the initial time. The initial covariance
matrix for both range-rate and angular measurements is

% O O 0 0 0 0 0
0 % 0 0 0 0 0 0
0 0 ot O O 0 0 0
A_|0 0 0 & 0 0 0 0
1o 0 0 0 e O 0 0
0 0 0 0 0 o 0 0
0 0 0 0 0 0 o, O
o 0 0 0 0 0 0 o

(34)

For this problem the following initial standard devia-
tions were assumed for the parameters:
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o5 = 1000.0 km
099 = 10.0 deg
oy o = 1.0m/sec
onge = 0.1deg
o¢0 = 0.01 deg
o0 = 0.01deg
oy = 0.1deg

(35)

g7 = 6.0 min

The precise values used above could be debated, but the
result of the incorrect convergence of § will not be altered
as the standard deviations of Eqgs. (35) are changed.

C. Initial Estimated Values of Parameters

The initial estimated values of the independent vari-
ables at 10 days prior to closest approach were arbitrarily
perturbed from the nominal values by approximately one
standard deviation. The nominal value of a parameter
corresponds to its actual value in the model. The esti-
mated value corresponds to what it is thought to be. The
initial values of the parameters are as follows:

b, = 8000.0
Ver = 7.00L km/sec
e = 30.1deg

Ler = 160.01 deg

&er = 100.01 deg

ner = 260.1 deg
7; = 6.0 min

Several initial values for § were used in the study.

D. Standard Deviations of Observables

The two observables used in the study are earth-to-
spacecraft range rate and the spacecraft-centered angle
between the star Canopus and the target planet. For com-
parison, results are presented for two standard deviations
op of the data noise on the range-rate measurement. These
are 0.001 m/sec and 0.01 m/sec for a 1-min sample.? For
the angular measurement, a standard deviation o of
0.01 deg is used for a l-min sample.* The covariance

*The standard deviation of the data noise is expected to be within
this range for future planetary missions.

“This value was estimated after conversing with a few people in-
volved in approach guidance at the Jet Propulsion Laboratory.
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matrix for the observables has the following form if both
the range-rate and angular measurements (uncorrelated)

are used:
o 0
A\ = R
AT 0 aé

The quantity AT is the time in minutes by which the
program is incremented along the spacecraft trajectory.
The partial derivatives used in the A matrix of Section IV
are computed at every time increment AT along the tra-
jectory. The time increments used in the program vary
from 1440 min at 10 days out, when the partial derivatives
change very little, to about 0.2 min at closest approach,
when the partial derivatives are erratic. A constant 1-min
or smaller time increment AT is not used along the whole
trajectory because of the excess time required for the
machine calculations.

E. ldentification of Trajectory Runs

The results of the orbit-determination program for the
example trajectory are shown graphically in Figs. 12
through 61 at the end of this section. Figures 12 and 13
show the nominal values of range rate and angular mea-
surement with time. The range rate shown on Fig. 12 is
that attributed to the gravitational influence of Mars,
ie., Vyp* p given in Eq. (19). Figures 14-27 show the par-
tial derivatives of range rate and the angular measure-
ment with respect to the independent variables for the
nominal trajectory.

Figure 28 shows the initial aiming points for three
cases plotted in Figs. 29 through 60. Figures 29-44 show
the estimation and standard deviations of the independent
variables for a range-rate data noise of 0.001 m/sec (o3)
for a 1-min sample. Figures 45-60 show the same for a
range-rate data noise of 0.01 m/sec. The subscript labels
1, 2, and 3 on the plots in these figures correspond to
cases 1, 2, and 3 shown in Fig. 28 and are identified as
follows:

(1) In case 1, the initial estimated value of 4 is equal
to 23 deg at 10 days prior to planet closest approach,
and only range-rate measurements are used. It is
shown that for this case the value of ¢ will con-
verge correctly to its nmominal value of 25 deg.
Other variables will also converge to their nominal
values.

(2) In case 2, the initial estimated value of § is equal
to 38 deg at 10 days prior to planet closest ap-
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proach, and again only range-rate measurements
are used. However, for this case it is shown that the
estimated value of ¢ will converge to an incorrect
image value of 35 deg. The other variables will
converge to their nominal values.

(3) In case 3, the initial estimated value of 4 is again
38 deg at 10 days prior to planet closest approach,
but for this case both range-rate and angular mea-
surements are used. This time it is shown that the
estimated value of 4 will converge to its correct
value of 25 deg. Again the other variables will
converge to their nominal values.

Note that the effect of the smaller data noise on range
rate is to make convergence of the various parameters
start a few hours earlier. Also, the effect of including the
angular measurement with range rate is to make con-
vergence of the parameters start a few days earlier; this
effect is probably optimistic, since the model used does
not contain noise in the measurement or biases in the
measurement equipment. Figure 61 shows the estimated
values of 4 as a function of time for several initial values
of § and a range-rate data noise of 0.01 m/sec.

F. Discussion of Ambiguity in Convergence of Orientation
of the Trajectory Plane

Special attention is called to Figs. 29 and 30, 45 and 46,
and 61. These figures show the estimated values of 4 and
the standard deviation as a function of time for various
initial values of 9. Note that correct convergence results
for case 1 (9,) of Figs. 29 and 30, and 45 and 46.5 Case 1
corresponds to an initial estimated value of ¢ equal to
23 deg (at 10 days prior to closest approach) using range
rate as an observable. Note that for case 2 (4,), where
the initial value of 6 is 38 deg, incorrect convergence
results to a value of 35 deg instead of 25 deg. This
value of 35 deg corresponds to the image aiming point
(29g — Ox), where 5z = 30 deg and 8y = 25 deg for the
example problem. Both range-rate and the angular mea-
surement are then used for case 3 (8;), using the same
initial value for 4 of 38 deg that was used for case 2. Note
that correct convergence results for this case. Another
point of interest in Figs. 29 and 45 is the symmetry of
the convergence of § as a function of time for cases 1 (4,)
and 2 (6.). Note that one appears to be the mirror image
of the other.

*Convergence is assumed when the estimated parameter, such as 4,

approaches a value with a consistently decreasing value for the
standard deviation of its uncertainty.
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The bounds on the initial values of ¢ for which con-
vergence to the nominal or image aiming points will occur
is the next point of interest. Several initial values for ¢
were run using an initial standard deviation of 10 deg
and using only the range-rate measurements with a data
noise of 0.01 m/sec. These are plotted in Fig. 61. Initial
values of the other variables and their standard devia-
tions were not altered. For the cases run, note that the
initial 6 values of 38, 30, 27, and 25 deg approximately
converge to the incorrect image value of 35 deg. The
initial 4 values of 35, 32, and 22 deg converge to the
correct value of 25 deg. The time-varying standard devi-
ations of all the cases are about the same as that of cases 1
and 2 of Fig. 46. Also note in Fig. 61 that it is possible

7.4 I I I I I 1 ] I I I T

sec

RANGE RATE, km

HOURS FROM CLOSEST APPROACH

Fig. 12. Nominal range rate vs time from
closest approach

130 1 I I T i I I I I I 1

CANQPUS-SPACECRAFT~-MARS
ANGLE, deg

-12 -8 -4 0 4 8 12
HOURS FROM CLOSEST APPROACH

Fig. 13. Nominal Canopus—spacecraft—-Mars angle
{angular measurement) vs time from
closest approach
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for the initial estimated value of ¢ (25 deg) to be almost
correct and still converge to the incorrect image solution
(35 deg). It is not clear why this takes place. However,
from Fig. 61, once the estimated value of 6 crosses the
approximate mid-point (§ = 30 deg) between the image
and the nominal 6, the parameter then seems to eventu-
ally converge to the other solution.

The estimates of 7z and 7¢ of Figs. 35, 41, 51, and 57
did not improve, since the standard deviation of ¢ did
not become less than the a priori standard deviations of
ni and 7¢ (0.1 deg). The angles 7z and 7¢ are linked with
§ by the expressions cos(nz —8) and cos(nc— ¢) of
Egs. (19) and (20).

km
db ' sec, km
H
0

~10 ! 1 1 1 ! 1 i L i
210 9 -8 -7 -6 -5 -4 -3 -2 -1 0
DAYS BEFORE CLOSEST APPROACH

Fig. 14. Partial derivative of range rate with respect
to impact parameter b vs days hefore
closest approach
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Fig. 31. Estimate of impact parameter b vs time from closest approach for o; = 0.001 m/sec
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Fig. 32. Standard deviation of impact parameter b vs time from closest approach for o5 = 0.001 m/sec
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Fig. 36. Standard deviation of parameter nz vs time from closest approach for ¢ = 0.001 m/sec
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Fig. 58. Standard deviation of parameter ;¢ vs time from closest approach for o = 0.01 m/sec
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Fig. 60. Standard deviation of time of periapsis passage r vs time from closest approach for o; = 0.01 m/sec
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VL. Extension of Range-Rate Equation
A. Derivation of New Range-Rate Equation

In Section II the equation for range rate from earth to
the spacecraft was shown to be

p=(=Vs+ Vo+ Vyp)p (36)

The unit vector from earth to the spacecraft was ex-
pressed as

A A . A . . A
Pp=—coslgS +sinlgcosnzT + sinézsingz R

For the example problem, 6 was considered to be fixed
for small displacements of the spacecraft near the planet
and also as the spacecraft approached the planet. Thus
the parameters £z and 4; were fixed. In order to consider
a P that is not fixed, the form of the range-rate equation
will be changed to reveal more insight into the geometry.
Range rate can then be expressed as
. (_“VE + VP + Vs/p) A

p= ) P (37)

The vector p is defined as
P = RP +r (38)

where

R; = vector from the earth-based observer to the planet
ata given time T

r =radius vector from the planet to the spacecraft
at the given time T

From Eq. (15),

A A A
r=—rcosaS +rsinacosdT + rsinasinfd R

The vector from the earth to the planet is expressed in a
similar manner to that of Eq. (3), which is

A A A A A A
Re=(Rp*S)S+ Rp,*T)T + (R,-R)R (39a)
where
A
BP'S == Rp {—COSZP}
A
Ry T = R, {sinpcosnp} (39b)
R, R = Ry {sin {psin 5p}
38

and

B.P= |Rpl

The parameters {p and 5, define the direction from the
observer to the planet at a given time T. These differ
slightly from ¢z and 7z, which define the direction from
observer to spacecraft. Let

Vs: (—VE+VP)" ?
VT — (_VE -+ Vp . (40)
VR:(_VE+VP)' s

Making the substitutions of Eqs. (10), (15), (38), (39b),
and (40) into (37) yields

B> > U

V.
p=— TS<RPCOS {p+ rcosa)
Vi . .
+ ’ (Rp sin £p cos 9p + rsinacos §)
Ve . . L
+ T(Rpsm Lpsinyp -+ 7sin e sin §)

R
- TPVOO cos {p

R . ;
+ Bk fein 08— 0) eos— 1] = cospsin)

(41)

Notice that Eq. (41) has a similar form to the simplified
range-rate Eq. (12), except {» and 7p replace ¢z and 5z
The parameters {p and 5, vary slightly with time, but
only depend on the position of the planet with respect
to earth. Moving or displacing the spacecraft in space
does not affect these two parameters. For the new expres-
sion of Eq. (41), § is dependent on 6 by expressions other
than cos (yp — 6). Thus the time history of § past the
planet will no longer have the precise identical values for
=+ (y» — 8) for every approach direction of the trajectory;
however, they will be very close. As the direction of the
approach asymptote is varied, the closeness of the two
range-rate histories for (4, — 0) will vary. This will be
discussed further in Section VI-B.

The range p from the earth to the spacecraft given in
Eq. (41) can be expressed as follows:

p=[p-pl%
p = [(Re + 1)~ (Rp +1)]%
p=[Rs + 72 + 2r-RpJ%
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Substituting Egs. (15) and (39) into the above expression yields

p=[R2 + r* + 2r Rpcos acos {p + 2r Rpsin asin {p cos (yp — )% (42)

Notice in Eq. (42), for earth-to-spacecraft range p, that 6
only appears in the form cos(np — #). Thus the range p
history will have the same values for 2=(yp — §). Thus if
range is used as an observable, a problem similar to that
encountered for range rate will occur in determining
whether 6 = 4,, or § = 2yp — 6,.

B. Survey of Vgrious Directions of the Approach
Asymptote S

Upon surveying the effects on range rate of various
approach directions of the spacecraft at the planet, it
was found that if the approach asymptote S, direction
from earth to planet Rp, and velocity of planet with
respect to earth (—V; -+ Vp) are all coplanar, p will again
depend on 4 only in the form of cos(yr — ¢). The co-
planar relationship desired is demonstrated in Fig. 62.
The requirement for the coplanar relationship is

A
(—VE+VP)'B VR
t = = — 43
T N+ V)T Vr (43)

where 0= 7p= 2. Recall that 7, is defined as the angle
from the 'f‘ axis to the projection of R, onto the ﬁ,
plane. If the value for V; in Eq. (43) is substituted into
Eq. (41), the result is

\4
p= ——f(Rpcosép + rcosa)

Ve . .
P [Resin &p + rsina cos (np — 6)]
_ RpVacosip
P
Ry I . i
+ = v (sin g cos (ne — 6) [cosa— 1] — cos Zrsina)

(44)

The result derived is the range rate from earth to the
spacecraft when the following three vectors are coplanar:
(1) the instantaneous radius vector Ry from earth to the
planet; (2) the instantaneous velocity of the planet with
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respect to earth (—Vz + Vz); (3) the direction of the
approach asymptote S of the spacecraft at the planet.

At the time T when the coplanar relationship exists,
note from Eq. (44) that $ is only dependent on ¢ by the
function of cos (9, — 4). Thus at this time T, g will have
the same value for =(y» — 6). The parameter Z, will be
identically the same for any value of #» or 4 at a given
time T.

If the coplanar relationship exists during the entire
approach of the spacecraft to the planet, then at any
time T, § will have the same value for =(y, — @), since
ne will then be constant. This coplanar relationship will
exist at any time T if: (1) the velocity of the planet with
respect to earth (—Vgz + Vp) is constant; or (2) if the
change of this velocity with time remains in the same
plane, i.e.,, the plane that contains the instantaneous
velocity and the planet-to-earth vector. Both of these
conditions are approximately satisfied. The velocity of
the planet with respect to the earth (—Vg+ V;) will
change very little over a time interval of a few days; the
small velocity change that does occur over this time inter-
val will be nearly directed in the plane that contains the
instantaneous velocity (—Vz + Vp) and the earth-to-
planet direction. The latter should be true if the incli-
nations of the heliocentric trajectory planes of the earth,
the spacecraft, and the target planet are separated by only
a few degrees, which is usually the case for low-energy
ballistic trajectories to most of the planets.

Fig. 62. Description of coplanar relationship
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VIL. Conclusions and Extensions of Work
A. Conclusions

The analytical study presented in this report may be
summarized as follows:

1. Simple analytical equations are derived for the range
rate of the spacecraft with respect to the earth during the
planetary approach phase. Also, simple analytical equa-
tions are derived for a spacecraft-centered angle between
a body and the target planet. These expressions enable
various orbit-determination studies to be easily performed.

2. The geometrical symmetry of the earth-to-spacecraft
range-rate time history was pointed out for trajectory-
plane orientations on either side of the plane that con-
tains the earth, the planet, and the direction of the
approach asymptote of the near-planet trajectory. The
assumption made is that the radius vector from earth
to spacecraft remains constant during the planetary ap-
proach. An extension of the analysis is shown in Section VI
where the earth-to-spacecraft radius varies with aiming
point and with time.

3. Prior to this investigation, it was thought that the
spacecraft range and range-rate time history past the
planet was unique for every planet-centered trajectory-
plane orientation or inclination chosen.

4. The range-rate partial derivatives are derived for
the case where the observer is located at the center of the
earth, and the earth-to-spacecraft position vector is fixed
during the approach phase and for displacements of the
spacecraft as a result of rotating the trajectory plane.

From the numerical results presented in Sections V
and VI, the following conclusions can be drawn:

1. Under the assumptions that the observer is located
at the center of the earth and the spacecraft position
vector relative to the earth is fixed, an orbit-determination
program using range rate as an observable can converge
to the incorrect image solution of the trajectory orienta-
tion § when the initial estimated value of ¢ is such that
the a priori dispersions of § encompass both the image
and the nominal values of 4.

2. The incorrect convergence can take place regardless
of the size of the standard deviation of the data noise.

3. By adding another observable, such as a spacecraft-
centered angle between a star and the target planet, the
program will converge to the correct nominal orientation
of the trajectory plane.
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4. If the earth-to-spacecraft radius is not fixed near the
target planet, then the earth-to-spacecraft range-rate time
history will no longer be identical for == (3, — ), equal
values' of the trajectory orientation selected about the
earth, planet, and approach-asymptote plane.

5. An orbit-determination program might still converge
to the incorrect trajectory orientation, however, since the
differences are small. This is an area for further study.

6. A special direction of the approach asymptote at the
planet could still exist, however, which would again make
the range-rate time history identical for equal values of
the trajectory-plane orientation = (9, — §) symmetric
about the earth, planet, and approach-asymptote plane.
This approach direction must be such that the approach
asymptote, the planet-to-earth vector, and the velocity of
the planet with respect to earth are all coplanar. This
situation occurs for specific trajectories to Mars in 1971.
However, possible convergence to the incorrect trajectory
orientation has not been demonstrated for this special
situation and is also an area for further study.

7. The geometrical symmetry of the earth-to-spacecraft
range p was pointed out with the trajectory-plane orienta-
tion =+ (5, — @) on either side of the plane that contains
the earth, the planet, and the direction of the approach
asymptote with respect to the planet. Thus the earth-to-
spacecraft range was discarded as an additional observ-
able in this investigation, since no additional knowledge
would be gained in knowing which of the two trajectory
planes the spacecraft might be on.

B. Recommendations for Further Study

The estimation of the trajectory orientation and the
study of its incorrect convergence should be performed
using a more precise model. The author considers this
report to be only the first step. Additional steps to obtain
a more precise model are as follows:

1. Include a non-fixed direction from earth to the space-
craft when the spacecraft is near the target planet. Pre-
liminary equations for this step are derived in Section VL.

2. Examine various directions of the spacecraft’s ap-
proach asymptote at the target planet. One special direc-
tion to examine is that in which the approach asymptote,
the planet-to-earth vector, and the velocity of planet with
respect to earth are all coplanar.®

®This geometrical relationship exists for typical trajectories from
earth to Mars in 1971.
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3. Include one or more rotating observers on the sur-
face of the earth instead of putting the observer at the
center of the earth.

4. Include additional orbit-determination uncertainties
in the study, such as an uncertainty in the gravitational
constant of the planet, ephemeris uncertainties of the
planet, station-location uncertainties of the observer on
the surface of the earth, and the inclusion of data noise
on the observables.

If incorrect convergence still results for the trajectory-
plane orientation after including the above changes to the

JPL TECHNICAL REPORT 32-1331

model, additional observables can be utilized to alleviate
the situation as was done in this report. Another possible
method of alleviating the situation might be to start the
estimation procedure near both the image and the nominal
trajectory orientation and to compare the sum of the
square of the residuals for the two converged cases. The
converged trajectory with the lowest sum of the square
of the residuals would then be assumed to be the correct
one, since for this case the calculated trajectory would
agree more nearly with the observed trajectory.”

*This method was suggested by several engineers at the Jet Propul-
sion Laboratory. Its feasibility is being studied by K. Russell.
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Appendix A

Description of Approach Asymptote and

Hyperbolic Excess Velocity

According to the two-body problem, the path of one
body with respect to another due to the mutual gravita-
tional attraction of the two bodies is an ellipse, parabola,
or a hyperbola. If the motion of a small body (such as a
spacecraft) originates outside the gravitational influence
of the other body (such as a planet), the path of the space-
craft with respect to the planet will be that of a hyperbola
with the planet located at the focus. The incoming as-
ymptote of this hyperbolic path is called the approach
asymptote, The speed of the spacecraft with respect to
the planet as it enters the gravitational influence of the
planet is called the hyperbolic excess speed. At this time
the direction of the spacecraft velocity with respect to the
planet is along the approach asymptote.

The direction and magnitude of the hyperbolic excess
velocity is determined by subtracting the heliocentric
velocity vector of the spacecraft at that time from the
heliocentric velocity of the planet as shown in Fig. A-1.
IfV, =V — Vp, where V,, = | V|, then S is defined as

A
S=

7

The velocities of the spacecraft with respect to the sun
and planet at arrival are uniquely determined for a given
launch date at earth and arrival date at the planet. This
is true because the heliocentric path of the spacecraft is
uniquely determined by two radii from the sun to space-
craft and the total transit time between the two points
(Lambert’s theorem). The two radii correspond to the
heliocentric position vectors of the earth and planet at
launch and arrival, respectively.

Fixing the heliocentric trajectory of the spacecraft will
then determine the heliocentric velocity V of the space-
craft anywhere along its path. At a given time the velocity
of the planet V; is known. Thus the hyperbolic excess
velocity, V., = V — Vp, of the spacecraft with respect to
the target planet is uniquely determined by the launch
date at earth and arrival date at the planet. A small un-
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SPACECRAFT

PLANET

Vp

Voo

Fig. A-1. Description of approach asymptote and
hyperbolic excess velocity

certainty in this velocity will exist due to the various
pertirbing influences and uncertainties. The hyperbolic
excess velocity is almost constant, independent of ‘which
side of the planet the spacecraft will pass. Changing the
flyby pass will change the heliocentric position of the
spacecraft at arrival by only a fraction of a percent. This
small change will alter the spacecraft heliocentric velocity
at arrival and thus the hyperbolic excess velocity by an
infinitesimal amount.
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Appendix B

Derivation of Radius Equation

The radius of the spacecraft from the target planet can
be expressed in terms of the target-centered angle « from

where (0 = y =< ). Thus

the approach-asymptote direction to the spacecraft. This siny = /1 —cos’y (B-4)
angle is more convenient than true anomaly v in the pre-
sentation of the results. The hyperbolic conic equation for ~ Substituting Eq. (B-3) into (B-4) yields
planet-to-spacecraft radius is
) e —1
b siny = (B-5)
pm B (8-1) )
a(l+ ecosv)
Substituting Eqs. (B-2), (B-3), and (B-5) into (B-1) yields
From Fig. B-1
bz
vTeTy (B-2) e a(l + y/e* — Isina — cosa) (B-6)
The angle v is equal to the true anomaly v of the space- g :
0 alytical geometr
craft when the spacecraft is an infinite distance away rom analytica® 8 Y
(r- o). Making this substitution into Eq. (B-1) yields 2 =a+ b (B-7)
Also
cosy="7% (B-3) c=ae (B-8)
PLANET
PARALLEL TO
APPROACH ASYMPTOTE R
§
—_— —
SPACECRAFT
AT TIMET

| |

oy

APPROACH
ASYMPTOTE

Fig. B-1. Definition of hyperbolic elements
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Substituting Eq. (B-8) into B-7) yields

44

Substituting Eq. (B-9) into (B-6) yields

bz

b =
P
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